第一文秘网    > 党团范文

卫星姿态控制系统执行器的故障诊断方法研究

作者:jnscsh   时间:2022-04-18 08:45:39   浏览次数:

zoޛ)j首工作完成太空探索任务已逐渐成为国际航天技术发展的研究热点之一。 针对脉冲等离子体推进器(Pulsed Plasma Thruster, PPT)作为执行器的卫星姿态控制系统常见故障问题, 设计了一种基于新型级联前馈神经网络的故障诊断系统。 该系统采用自组织神经网络训练算法, 结合训练误差与拓扑信息, 优化神经网络结构, 提高其泛化性能, 进而应用神经网络模拟PPT的动力学特性开展故障诊断。 仿真结果表明, 该训练算法能优化网络结构, 提升了故障诊断策略的有效性与可靠性。

关键词: 小卫星; 姿态控制; 神经网络; 故障诊断; 脉冲等离子体推进器

中图分类号: V439+.2文献标识码: A文章编号: 1673-5048(2018)02-0069-08

0引言

近年来, 航天科学技术日益进步, 卫星的种类也随之不断丰富。 目前, 多颗小卫星协同工作已经成为航天领域发展的新方向, 也是国内外研究的最新热点[1]。 小卫星具有成本低、 体积小、 灵活性高等优点, 可通过编队飞行的方式替代大型航天器完成任务。 小卫星群编队飞行时, 要求每颗卫星均具备良好的轨道与姿态机动能力, 从而顺利完成队形保持及协同合作等任务, 这对卫星控制系统与执行器提出了较高要求。 传统的卫星姿态控制系统中普遍使用反作用飞轮作为执行器, 但体积和重量等因素限制了其在小卫星中的使用。 目前, 作为电推进技术之一的脉冲等离子体推进器(Pulsed Plasma Thruster, PPT)因具有成本低、 体积小、 效率高、 控制精度高等优点, 被广泛用作小卫星的执行器[2]。 然而, 卫星在环境恶劣的太空中工作会受到很多未知因素影响。 此外, PPT的工作过程涉及电、 热、 磁等多个过程, 一旦发生故障会导致整个控制系统失灵, 进而影响到整个航天任务, 所以必须保证卫星具备自主故障诊断及故障处理的能力。

经过各国学者和专家多年的研究和论证, 目前航天器的故障诊断技术已经形成了较为完善的体系。 现阶段, 用于故障诊断的方法主要是基于模型的方法和基于人工智能的方法[3-4]。 前者通过构建被诊断对象的数学模型, 将模型计算产生的理论值与实际工作情况中的测量值作比较, 生成残差作为故障检测和辨识的依据。 但这种方法的可靠性很大程度依赖于模型的准确性, 对于一些复杂的非线性系统, 很难建立精确的数学模型。 因此专家们又提出了人工智能的故障诊断方法, 利用已有的历史数据进行训练分析, 模拟实际系统, 从而完成故障诊断任务。 如文献[5]分别利用两个递归神经网络识别卫星姿态控制系统的执行器和敏感器故障。 文献[6]利用动态神经网络模拟了反作用飞轮的运行特性, 实现了对卫星群姿态控制系统的故障检测与隔离。 文献[7]通过设计一种Mahalanobis-like距离计算神经元间距离的HBF神经网络, 并引入新的矩阵表示神经元间的相似

收稿日期: 2017-07-14

作者简介: 陈辛(1993-), 男, 黑龙江哈尔滨人, 硕士研究生, 研究方向是航天器故障诊断算法研究。

引用格式: 陈辛, 魏炳翌, 闻新. 卫星姿态控制系统执行器的故障诊断方法研究[ J]. 航空兵器, 2018( 2): 69-76.

Chen Xin, Wei Bingyi, Wen Xin. Research on Actuator Fault Diagnosis Method for Satellite Attitude Control System[ J]. Aero Weapoy, 2018( 2): 69-76.( in Chinese)

度, 用于航天器执行机构的故障重构。

而神经网络的跟踪拟合能力很大程度上取决于其网络结构。 文献[8-9]对神经网络结构的自确定进行了很多尝试, 大致包括三种主流方法: (1)先选取最小的神经网络结构, 在训练期间逐渐增加新的隐含层、 神经元, 并生成连接权值; (2)选取大型神经网络结构, 在训练过程中删除不必要的隐含层、 神经元; (3)使用一种混合方法——结构复原算法, 对神经元与隐含层进行搭建, 然后删减多余的神经元与隐含层。 文献[10]解决了单隐含层神经网络任意精度的函数拟合问题。 文献[11-12]对多隐含层神经网络提出了新的见解。 文献[13]指出的结构自适应性和功能自适应性可以提高网络自确定的性能。

结合上述研究成果及存在的问题, 本文采用一种新的神经元搭建算法, 用于确定网络完整的拓扑信息和神经元连接权值, 并结合了结构自适应与功能自适应算法, 通过最小的神经网络结构适应所有训练数据。 随着适应训练的推进, 逐漸向网络中添加隐含层与神经元, 并且着重训练未被学习的数据。 利用自组织网络训练算法, 设计了一种新型级联前馈神经网络故障诊断系统。 通过神经网络模拟PPT的运行特性, 判断其是否工作在正常状态, 最后针对PPT系统常见的两种故障进行了仿真分析, 验证了此故障诊断策略的有效性与可靠性。

1卫星姿态系统

1.1卫星姿态运动方程

卫星的姿态运动方程可以描述其绕自身质心的运动状态, 通常由两部分组成: 一部分是通过坐标变换关系得到的运动学方程, 另一部分是通过牛顿运动定律得出的动力学方程[14]。 首先通过四元数的表示方法给出卫星的运动学方程。 四元数法主要依据欧拉旋转定理, 即两个坐标系间的相对方向可以通过一个轴的旋转来表示, 同时也可避免欧拉角表示方法中出现的奇异点问题。 四元数通常包括一个标量q0以及一个矢量[q1q2q3]T, 矢量代表坐标系变换的旋转轴, 标量代表转动的角度大小。 将卫星本体坐标系转换到质心轨道坐标系的四元数设为

推荐访问:控制系统 故障诊断 姿态 执行器 方法