第一文秘网    > 教育计划

浅论能量守恒之动能定理

作者:jnscsh   时间:2021-06-27 20:00:20   浏览次数:

zoޛ)j馟vvviuiioiixZ工作之后,顺着答题思路,解题将变的轻而易举。

三、例题解答步骤的演绎

例题1:如图所示,质量为m=0.5kg 的小球从距地面高H=5m处自由下落,到达地面时恰能沿凹陷于地面的半圆形凹槽槽壁运动,半圆槽半径R=0.4m小球到达槽最低点时的速率为10m/s,并继续沿槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次。设摩擦力大小恒定不变:(1):求小球第一次离槽上升的高度h。(2):小球最多能飞出槽外几次(g=10m/s2)?

解题分析:首先我们需要了解小球的运动状态以及期间有哪些能量发生变化。这里小球的运动状态应该分两个部分来分析:一是小球下落至槽过程中重力势能减少,下落时产生速度,那么动能变化,动能的变化是从无到有的一个过程,它是增加的。沿槽壁运动时有摩擦力,既然有摩擦那么就会产生热能,消耗能量。二是小球由槽底沿槽壁向上运动时,小球位置升高,重力势能增加,此时小球速度降低,动能减少。小球离开槽壁向上运动时,动能全部转换为重力势能。因题目假设摩擦力大小恒定不变,因此产生的热能跟下降过程一样。在小球上升到最高点后又落下,重复上述过程。在这之中小球初始速度为零,那么在起始位置时就只有重力势能。直到小球静止在槽底这整个过程就是重力势能转换为热能的一个过程。

根据参考系的不同对于问题(1)有两种解题思考方法。

方法1:参考系为凹槽底部。当小球第一次离开槽壁上升时它的动能为小球在槽底时的动能减去因摩擦产生的热能、再减去小球上升至地面时的重力势能,因此此时的动能为E1=G1=G-EF-GR=27-4-2=21J。此时小球可以上升的高度为h1=G1/(mg)=21/(0.5×10)=4.2m。由此,问题(1)已经解答出来了。

方法2:参考系为地面。因小球在槽内完成一次下降上升过程因摩擦而消耗的热能为EF=2Ef=4J。而小球落至地面时的动能为GH=mgH=0.5×10×5=25J。那么小球从槽壁的另一端飞出时,其动能为E1=GH-EF=25-4=21J。由此可知高度h1为4.2米。

再看问题(2),小球最多能飞出槽外几次,因飞出槽外由此需耗能量为4J,而小球降落至地面时的动能为GH=mgH= 0.5×10×5=25J。而小球每在槽内完整的运动一次消耗的热能为EF=4J,那么,由此可知小球在槽内运动次数为N=GH/EF= 25/4=6.125,取整即为6次。

【参考文献】

[1] 李平. 动量定理及动量守恒定律的教学探讨[J]. 科技信息(科学教研),2007.22.

[2] 涂勇. 谈动量定理的理解和应用[J]. 数理化学习(高中版),2006.18.

[3] 黄伟、徐高本. 动量定理 动量守恒定律[J]. 高中生学习(高三版),2011.08.

(作者单位:江苏省东台市安丰中学)

推荐访问:守恒 动能 定理 能量