第一文秘网    > 心得体会

不同肾上腺能受体激动剂对冷暴露中缅树鼩产热能力的影响

作者:jnscsh   时间:2021-06-28 09:48:30   浏览次数:


打开文本图片集

摘要:研究了冷驯化条件下不同肾上腺能受体激动剂对中缅树鼩产热能力的影响,测定了其静止代谢率和非颤抖性产热。结果表明:冷驯化组中缅树鼩的静止代谢率(Resting metabolic rate,RMR)较对照组增加,β3\"N(注射β3\|肾上腺素激动剂BRL37344)和N(注射NE)较对照组均极显著增加。冷驯化组和对照组在注射NE和BRL37344后其耗氧量均有极显著的增加。对照组中缅树鼩的N高于β3\|N,但两者之间差异不显著。冷驯化组中缅树鼩N与β3\|N差异极显著。以上结果说明冷驯化可使中缅树鼩的产热能力显著增强,其BA中可能存在有β3\|肾上腺能受体(β3\|adrenergic receptor,β3\|AR),推测β3\|AR可能并不是中缅树鼩BA中唯一的肾上腺能受体,NE可能通过多种肾上腺能途径来增加产热,肾上腺能受体通路在中缅树鼩适应性产热中起到了重要作用。

关键词:中缅树鼩;肾上腺能激素;产热

中图分类号:Q93

文献标识码:A文章编号:1674-9944(2015)12-0001-03

1引言

低温胁迫是刺激小型哺乳动物产热能力增加的主要环境因子之一[1]。低温条件下小型哺乳动物往往会增加其静止代谢率(Resting metabolic rate, RMR)和非颤抖性产热(Nonshivering thermogenesis, N)[2]来适应这样的环境。低温胁迫刺激静止代谢率和非颤抖性产热增加的产热机理是不同的,刺激静止代谢率的增加主要来自内脏器官产热能力的增加,如肝脏[3],非颤抖性产热的增加则主要是通过褐色脂肪组织(Brown adipose tissue, BA)中解偶联蛋白(Uncouping protein, UCP)的数量和活性的增加,从而使得非颤抖性产热增加[4]。

静止代谢率是动物维持正常生存的最低代谢水平,能反映不同种群或物种的能量消耗水平,对动物适应环境的理解具有重要的意义[6]。动物主要是通过交感神经释放去甲肾上腺素(norepinephrine, NE)来参与非颤抖性产热的调节,之前的研究认为非颤抖性产热是肾上腺能受体刺激的产热[7],非颤抖性产热对于小型哺乳动物适应低温环境具有重要的意义[8]。β3\|肾上腺能受体(β3\|adrenergic receptor, β3\|AR)特异性激动剂BRL37344能有效激活BA产热系统,导致非颤抖性产热产热显著增加[9]。中缅树鼩(upaia belangeri)属攀鼩目(candentia)树鼩科(upaiidae),为东洋界特有的小型哺乳动物,我国云贵高原及其附近的横断山区可能是中缅树鼩的分布的北限[10]。对中缅树鼩冷驯化条件下的RMR和N的研究有助于了解中缅树鼩在低温胁迫条件下的适应对策,从而进一步阐述该动物对环境变化的适应性。

4讨论

本研究组先前的研究表明:随着中缅树鼩栖息地纬度和海拔高度的增加,中缅树鼩RMR和N出现明显的季节性变化[14],低温[1]和短照[16]胁迫可以显著刺激产热能力的增加,而且在低温驯化条件下中缅树鼩的RMR增加的比例大于N增加[17],本研究在此基础上,对冷驯化条件下不同肾上腺能受体激动剂对中缅树鼩产热能力的影响进行了研究。

参考文献:

[1]Zhao Z J, Cao J, Liu Z C,et al. easonal regulations of resting metabolic rate and thermogenesis in striped hamster (Cricetulus barabensis) [J]. herm Biol,2010,3(1):401~40.

[2]Zhu W L, Wang Z . easonal changes in body mass, serum leptin levels and hypothalamic neuropeptide gene expression in male Eothenomys olitor[J]. Comparative Biochemistry and Physiology,201,184(1):83~89

[3]Zhu W L, Cai J , Lian X, et al. Adaptive character of metabolism in Eothenomys miletus in engduan Mountains region during cold acclimation[J]. Journal of hermal Biology,2010,3(8):417~421.

[4]Zhang Z Q, Wang D . easonal changes in thermogenesis and body mass in wild Mongolian gerbils (Meriones unguiculatus)[J]. Comp Biochem Physiol, 2007(148):346~33.

[5]MaNab B . On the utility of uniformity in the definition of basal rate of metabolism[J]. Physiol Zool,1997(70):718~720.

[6]Bozinovic F, Gallardo P. he water economy of outh American desert rodents: from integrative to molecular physiological ecology[J]. Comp Biochem Physiol,2006(142):163~172.

[7]peakman J R. he energy cost of reproduction in small rodents[J]. Acta her in,2007(27):1~13.

[8]ang G B, Cui J G, Wang D . Role of hypoleptinemia during cold adaptation in Brandt"s voles (Lasiopodomys brandtii)[J]. Am J Physiol Regul Integr Comp Physiol, 2009,297():1293~1301.

[9]trosberg A D. trueture and function of the adrenergic receptor[J]. Annu Rev Pharmacol oxicol,1997(37):421~40.

[10]loan Wilson D, Clark A B, Coleman . hyness and boldness in humans and other animals[J]. rends Ecol Evol,1994,9(11):442~446.

[11]Zhu W L, Jia , uang C M, et al. Changes of energy metabolism, thermogenesis and body mass in the tree shrew (upaia belangeri chinensis) during cold exposure[J]. Italian Journal of Zoology,2012,79(2):17~181.

[12]Zhu W L, Mu Y, Liu J , et al. Energy requirements during lactation in female Apodemus chevrieri (Mammalia: Rodentia: Muridae) in engduan mountain region[J]. Italian Journal of Zoology,201,82(2):16~171.

[13]ill R W. Determination of oxygen consumption by use of the paramagnetic oxygen analyser[J]. Appl Physiol,1972(33):261~263.

[14]Zhu W L, Zhang , Wang Z . easonal changes in body mass and thermogenesis in tree shrews (upaia belangeri) the roles of photoperiod and cold[J]. Journal of hermal Biology,2012(37):479~484.

[15]Zhang L, Zhu W L, Wang Z . Role of photoperiod on hormone concentrations and adaptive capacity in tree shrews, upaia belangeri[J]. Comparative Biochemistry and Physiology,2012(163):23~29.

[16]Zhang L, Zhang , Zhu W L, et al. Energy metabolism, thermogenesis and body mass regulation in tree shrew (upaia belangeri) during subsequent cold and warm acclimation[J]. Comparative Biochemistry and Physiology,2012(162):437~442.

[17]Zhang L, Liu P F, Zhu W L, et al. Variations in thermal physiology and energetics of the tree shrew (upaia belangeri) in response to cold acclimation[J]. Journal of Comparative Physiology,2012(182):167~176.

[18]eldmaier D. ource if heat during nonshivering thermogenesis in Djungarian hamster[J]. Comp Physiol,198(16):237~24.

[19]王政昆,李庆芬,孙儒泳.褐色脂肪组织产热及其调节机理[J].生理科学进展,27(4):33~3.

[20]Nedergaard J, Valeria G, Anita M, et al. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency[J]. Biochimica et Biophysica Acta, 2001(104):82~106.

[21]李庆芬,刘小团,黄晨西.长爪沙鼠冷驯化过程众褐色脂肪组织产热活性及解偶联蛋白基因表达[J].动物学报,2001,47(4):388~393.

[22]Zhao J, Cannon B, Nedergaard J. hermogenes is β3\|but not βl-adrenergically mediated in rat brown fat cells, even after cold acclimation[J]. Am J Physiol,1998,27(6):2002~2011.

推荐访问:激动剂 肾上腺 受体 暴露 能力