第一文秘网    > 致辞范本

气液接触蒸发高盐废水试验研究与能耗分析

作者:jnscsh   时间:2021-07-19 08:46:19   浏览次数:

zoޛ)j香۲۲9)]u))uvi5H?,֜ii۲_]nwvi5H?,ււi}n5E单位体积水分蒸发的能耗量。

其中单位体积水分蒸发电能能耗量计算公式可用式(1)表示:

式中:W0—在Δt时间内蒸发单位蒸馏水所消耗的外界电能(J/g);P—功率(W);ΔV—在单位时间内高盐水蒸发体积(L)。

2    实验结果与分析

2.1  循环流量对系统蒸发效率的影响

实验在平均室温33.5 ℃,平均环境湿度为64.2%的条件下进行,配置质量浓度为30 g/L的NaCl溶液预热至40 ℃,设置不同的循环流量,测定NaCl溶液的蒸发量,探究循环流量对系统蒸发量的影响。

实验结果如图2所示,随着流量的增大,蒸发量逐渐增大,实验范围内最大蒸发量是在循环流量为2 500 L/h时,蒸发量为17 L/h。1 800~2 000 L/h流量范围增速最大,当流量超过2 000 L/h时,增速放缓且趋向于零增速,当增大到一定值时开始下降。在系统运行过程中,水会在气液接触填料间形成水膜,增大热量和质交换面积,在回流空气的作用下,快速穿过水膜,在水膜破裂与形成的循环过程中,促进蒸发。当流量较小时,形成的水膜厚度较薄,容易被回流空气吹散,随着流量的增大,形成的水膜越成熟,传热传质更充分,但当流量过大时,水膜厚度过厚,传热热阻增加,无法进行充分的热量和质的交换,因此,蒸发量逐渐减少。

2.2  高盐水初始温度对系统蒸发效率的影响

实验在平均室温33.5 ℃,平均环境湿度为64.2%的条件下进行,配置浓度为30 g/L的NaCl溶液预热至不同的初始水温,调节进水阀设置循环流量为1 400 L/h,测定不同的初始水温条件下NaCl溶液的蒸发量,探究初始水温对系统蒸发效率的影响。

实验结果如图3所示,可以得出:蒸发量随着温度的升高而不断增加,本组实验最大值是当温度为45 ℃时,蒸发量为18.2 L/h。水分蒸发的过程是水分子发生相变和进行热交换的过程,热量的传递交换需要不断地消耗和补充热量,本系统利用的是低品质热能,热消耗速度快,因此,热量补充越充分就越能够促进蒸发,所以当温度不断升高时,蒸发量也随之不断增加。

2.3  气液接触蒸发高盐废水浓缩技术能耗分析

从表1实测数据可知,该气液接触蒸发高盐废水浓缩技术中初始水温越高,蒸发速率越快;随着温度的升高,对应的单位体积蒸发水量电能耗量降低。当NaCl溶液质量浓度为30 g/L,水温为45 ℃时,单位体积蒸发水量电能耗量为123 230.77 J,吨能电耗量约为34.23 kW·h.该技术应用到低温多效蒸发技术中进行大试,吨水电能耗量低至15 kW·h,相较于常用的蒸汽机械压缩技术(MVR)(吨水电能耗量46.84 kW·h)[4],气液接触蒸发技术的蒸发效率提高了约3倍,且低温多效蒸发技术多是利用70~50 ℃的低品热蒸汽,而本实验最高利用蒸汽温度是45 ℃,蒸汽温度越高其能耗越低,因此,将该技术应用到实际工程中,能耗将更低。

3    结语

实验表明气液接触蒸发浓缩实验过程中:随着流量的增大,蒸发量逐渐增大,实验范围内最大蒸发量是在循环流量为2 500 L/h时,蒸发量为17 L/h。1 800~2 000 L/h流量范围增速最大,当流量超过2 000 L/h,增速放缓且趋向于零增速,当增大到一定值时开始下降;蒸发量随着温度的升高而不断地增加,本组实验最大值是当温度为45 ℃时,值为18.2 L/h。

实验表明当初始水温为45 ℃时,气液接触蒸发浓缩高盐废水技术是其他蒸发技术效率的3倍,应用到现场大试中其吨能电耗量低至15 kW·h,并且蒸汽温度越高其能耗越低,若将初始水温提高到50~70 ℃,应用到实际工程中,能耗将更低。

4    结语

气液接触传质传热技术,在暖通空调领域应用广泛,常用于开式循环冷却塔,气液接触传热降低了热损耗,极大地降低了能耗成本。在工业企业或者其他外来热源不足或供能较低的情况下,利用气液直接接触传质和传热,对废水循环浓缩,可以联合采用多级多效的方式,也是尽量利用蒸汽余热,可对废水中盐分进行回收,实现零排放,降低能量损耗的措施。对设备进行市场推广应用,对设备进行全面的电气自动化和机械加工实体设计,研发适用于不同气候地区(例如太阳能技术的联用)或不同工业企业的工艺设备。

[参考文献]

[1]毛彦霞.机械蒸汽再压缩技术处理含盐废水试验研究[D].重庆:重庆交通大学,2014.

[2]HU P F,CUI X B,YANG Z C.Study on a direct contact heat transfer reboiler in the distillation of heat-sensitive materials[J].Chemical Industry and Engineering Progress,2002(21):158-161.

[3]王少雄.气液接触蒸发处理高盐废水的研究[D].邯郸:河北工程大学,2015.

[4]俞性佑,章世鑫.多效蒸发制盐与热泵法(蒸汽机械压缩)制盐中蒸发能耗的分析与比较[J].中国井矿盐,1993(6):18-21.

推荐访问:废水 能耗 蒸发 试验 接触


[气液接触蒸发高盐废水试验研究与能耗分析]相关文章